Evaluating the human X-chromosome pigment gene promoter sequences as predictors of L:M cone ratio variation.

نویسندگان

  • Carrie McMahon
  • Jay Neitz
  • Maureen Neitz
چکیده

Men with normal color vision vary widely in the ratio of long- (L) to middle-wavelength sensitive (M) cones. This variation provides opportunities to test models for the mechanism that produces L versus M cones during development. The L and M photopigment genes lie in a tandem array. Each gene has a promoter, and upstream of each array there is a genetic element, termed the locus control region (LCR), that is required for the expression of both L and M pigment genes. During development, for each cell that has been determined to be an L or M cone, it has been proposed that the LCR acts as a stochastic selector which chooses one gene from the array to be expressed. In this model, the L and M promoters compete for contact with the LCR in each photoreceptor. Theoretically, the promoter that, by chance, is the first to successfully form a stable and permanent complex with the LCR commits the cell to a lifetime of exclusive expression of its associated gene. Under this model, it has been suggested that nucleotide differences in the promoters influence their ability to compete in forming a complex with the LCR. Thus, normal variation in L:M cone ratio is predicted to be associated with nucleotide polymorphisms in the promoters. Here we tested this hypothesis by comparing the L and M promoter sequences for 73 males with normal color vision for whom L:M cone ratio estimates had been obtained previously. The M gene promoter sequences were found to be identical for all 73 males and the L gene promoters were identical for 71 out of the 73 males. Two males had mutations where in each case the L promoter differed by one nucleotide substitution compared to normal. Both of the males with promoter mutations had unusual cone ratios which is consistent with the growing body of evidence indicating that the relative ability of the promoters to form a complex with the LCR is a factor in determining cone ratio. However, the vast majority of cone ratio differences were not associated with any difference in the promoter sequence. To explain the high degree of cone ratio variation among normal males, the mechanism that determines whether a cone is L or M must involve genetic elements that have a high degree of genetic polymorphism in the normal population. The results presented here indicate that there are additional genetic components of the mechanism which remain to be identified and incorporated into the present hypotheses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cone pigment gene expression in individual photoreceptors and the chromatic topography of the retina.

Human trichromatic vision is based on three classes of cones: L, M, and S (long-, middle-, and short-wavelength sensitive, respectively). Individuals can have more than one M and/or more than one L pigment gene on the X chromosome along with an S pigment gene on chromosome 7. In some people the X-linked pigment gene array can include polymorphic variants that encode multiple, spectrally distinc...

متن کامل

The L:M cone ratio in males of African descent with normal color vision.

Among Caucasian males with normal color vision, long-wavelength-sensitive (L) cones outnumber middle-wavelength-sensitive (M) cones by nearly three to one, on average, and the L and the M cone opsin genes are arrayed on the X-chromosome with the L opsin gene being closest to an upstream enhancer element termed the locus control region (LCR). Interaction between an opsin gene promoter and the LC...

متن کامل

Estimates of L:M cone ratio from ERG flicker photometry and genetics.

Estimates of L:M cone ratio for males with normal color vision were derived using the flicker-photometric electroretinogram (ERG). These were obtained by best fitting ERG spectral sensitivity functions to a weighted sum of long (L)- and middle (M)-wavelength-sensitive cone spectral absorption curves. Using the ERG, measurements can be made with extremely high precision, which leaves variation i...

متن کامل

L and M cone proportions in polymorphic New World monkeys.

Platyrrhine monkeys typically have only a single X-chromosome opsin gene. Alleles of this gene code for multiple versions of middle- to long-wavelength cone photopigments. X-chromosome inactivation provides heterozygous females with a retinal mosaic of cones containing either of two types of M and L pigment, thus establishing the photopigment basis for trichromatic color vision. This study exam...

متن کامل

Nucleotide polymorphisms upstream of the X-chromosome opsin gene array tune L:M cone ratio.

In support of the long-held idea that cone ratio is genetically determined by variation linked to the X-chromosome opsin gene locus, the present study identified nucleotide differences in DNA segments containing regulatory regions of the L and M opsin genes that are associated with significant differences in the relative number of L versus M cones. Specific haplotypes (combinations of genetic d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of vision

دوره 4 3  شماره 

صفحات  -

تاریخ انتشار 2004